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The Impact of Multiple Endpoint Dependency on the Q Statistic in Meta-analysis 

Purpose 

 This paper examines impact of dependence on tests of homogeneity from two approaches 

to meta-analysis: univariate and multivariate. In univariate meta-analysis each study in a 

collection of studies is assumed to provide an independent effect size. In multivariate meta-

analysis some or all studies provide multiple effect sizes and the correlations among the 

outcomes are incorporated into the meta-analysis. 

 We are interested in what happens when researchers violate the independence assumption 

by including multiple dependent effect sizes in univariate analyses. How might this practice 

affect meta-analytic results? The primary purpose of this paper is to analyze the effects of 

multiple-endpoint dependency on the homogeneity statistic 𝑄. We simulate dependent data under 

varying conditions and analyze it in two different ways: using a typical univariate approach that 

ignores dependence, and using a generalized least square approach that accounts for dependence. 

Our rationale for examining 𝑄 is threefold: it is commonly used, simple to calculate, and is often 

used as the primary means of choosing between fixed- or random-effects models. 

Methods/Research Design 

 Consider a set of 𝑘 studies with one treatment group and one control group. We denote 

the total sample size from study 𝑖 as 𝑁𝑖, and the respective within-study sample sizes for 

treatment and control groups as 𝑛𝑖
T and 𝑛𝑖

C. For simplicity we examined the case of equal sized 

treatment and control groups  and where all individuals provide scores for 𝑃 = 2 outcomes. 

Standardized Mean Difference 

 The unbiased standardized-mean-difference (USMD) effect size (Hedges, 1981) is 

defined as 
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where 𝑌̅𝑖𝑝
T and 𝑌̅𝑖𝑝

C  are the respective sample treatment and control means for outcome p of study 

and 𝑆𝑖𝑝 is a sample pooled standard deviation. Hedges (1981) approximates the variance of 𝑑𝑖𝑝, 
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For a collection of studies, the fixed-effect mean effect size for outcome 𝑝 is calculated as 
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Last, the sample effect-size covariance for two USMD effect sizes for study 𝑖 is 
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where 𝑟𝑖 is the common within-group sample correlation between outcomes from the observed 

data (Gleser & Olkin, 2009). 

Heterogeneity and Univariate 𝑄 

 Statistical heterogeneity occurs when true effects differ among studies (Higgins & 

Thompson, 2002). This paper looks at the effect of multiple-endpoint dependency on the widely-

used homogeneity statistic 𝑄. Two forms of 𝑄 were analyzed: univariate and multivariate. The 

sample univariate Q for outcome 𝑝 is defined as 

𝑄𝑝 = ∑
(𝑑𝑖𝑝 − 𝑑̅●𝑝)

2

 𝑣𝑖𝑝
 ,

𝑘

𝑖=1

 (5) 
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where 𝑘 is the number of effect sizes. Equation (5) assesses the homogeneity of effect sizes 

across all studies for a single outcome (𝑝). Under the fixed-effects model and the assumption of 

independence of the 𝑘 effect sizes, 𝑄~𝜒𝑘−1
2 . The statistical properties of the univariate 𝑄 statistic 

have been well-studied under a variety of conditions (e.g., Hardy & Thompson, 1998; Harwell 

1997), but all studies have assumed effect-size independence. This paper analyzes the behavior 

of the 𝑄 statistic under a specific set of dependence conditions. 

GLS for Meta-analysis and Multivariate 𝑄 

 Consider a typical linear regression model for pairs of effect sizes of the form 

𝐝 = 𝐗𝛅 + 𝛆 , (6) 

 

where 𝐝 is a 𝑃𝑘 x 1 observed effect-size matrix, 𝐗 is a 𝑃𝑘 x 𝑃 matrix with elements 𝑥𝑚,𝑛 ∈

{0,1}, 𝛅 is a 𝑃 x 1 vector whose elements are common effect-size parameters to be estimated, 

and 𝛆 is a 𝑃𝑘 x 1 vector of residuals. 

 When the independence assumption is violated, as is the case with dependent effect sizes 

in meta-analysis, other estimation procedures are needed beyond the commonly-used ordinary 

least squares method. Generalized least squares or GLS estimation permits both heterogeneity of 

error variances and correlation among errors. This estimation method incorporates a variance-

covariance matrix, as shown by Raudenbush, Becker, and Kalaian (1988), 

𝛅̂GLS = (𝐗′𝐒−1𝐗)−1𝐗′𝐒−1𝐝 , (7) 

 

where 

𝐒 = [
𝐒1 𝟎 𝟎
𝟎 ⋱ 𝟎
𝟎 𝟎 𝐒𝑘

] ∶ 𝐒𝑖 = [
𝑣𝑖1 𝑐𝑜𝑣(𝑑𝑖1, 𝑑𝑖2)

𝑐𝑜𝑣(𝑑𝑖1, 𝑑𝑖2) 𝑣𝑖2
] . (8) 
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Last, we calculate the multivariate 𝑄 statistic as 

𝑄M = (𝐝 − 𝐗𝛅̂GLS)
′
𝐒−1(𝐝 − 𝐗𝛅̂GLS) (9) 

 

The 𝑄M statistic also follows an asymptotic chi-square distribution but with degrees of freedom 

equal to 𝑑𝑓𝑄M
= dim(𝐝) − dim(𝛅̂GLS) (Gleser & Olkin, 2009). 

 Two separate simulations (univariate and multivariate) were conducted. Conditions for 

both simulations are shown in Table 1. For the univariate simulation we created three different 

sets of independent and dependent effect sizes to manipulate the level of dependence in the 

analysis. The multivariate simulation used GLS estimation to account for multiple-endpoint 

dependency. Both simulations we analyzed the impact of dependence on the homogeneity 

statistic by examining Type I error rates. 

Data Generation 

 We generated two scores for 𝑁𝑖 2⁄  members each in a treatment group and a control 

group. Scores in study 𝑖 were 𝐘𝑖
T ~ MVN(𝛍T, 𝚺) for the treatment group and 𝐘𝑖

C ~ MVN(𝛍C, 𝚺) 

for the control group, where 𝛍T = [𝜇1
T 𝜇2

T], 𝛍C = [𝜇1
C 𝜇2

C], and 𝚺 = [
1 σ12

σ12 1
]. The 

population covariance and correlation of the two outcomes is σ12. The standardized-mean-

difference parameter for the first outcome is 𝛿1 = (𝜇1
T − 𝜇1

C) σ1⁄ ≡ 𝜇1
T, and similarly for 𝛿2. 

 We implemented a correlation structure to produce multiple-endpoint type data, 

𝚺 = 𝛒 =

[
 
 
 
 

1 𝜌T1T2
0 0

𝜌T2T1
1 0 0

0 0 1 𝜌C1C2

0 0 𝜌C2C1
1 ]

 
 
 
 

 , (10) 

 

where 𝜌T1T2
 and 𝜌C1C2

 are the population between-outcomes correlations for the treatment and 

control groups. For simplicity, 𝜌T1T2
= 𝜌C1C2

. 
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Univariate Procedures 

 Effect sizes and variances were calculated using (1) and (2), respectively. Fixed-effect 

means were then calculated using (3). From the information above, univariate 𝑄 statistics were 

calculated using (5). A set of five factors were varied (see Table 1). 

 For the treatment group, three population outcome vectors were considered: 𝛅 = 𝛍T =

[0 0] ∪ [0.4 0.4] ∪ [0.8 0.8]. The population vector for the control group was always 𝛍C =

[0 0], thus each pair of 𝛍T and 𝛍C provides a different magnitude of treatment effect, 𝛅. The 

between-outcomes correlation (𝜌) measures the degree of relatedness of the outcomes. Moderate 

to very large correlations were considered. The number of studies (𝑘) represents small to quite 

large meta-analyses. Study sample size (𝑁) refers to the size of the studies within a meta-

analysis, and varies from quite small to moderately large. 

 The dependency structure condition was the main focus of our univariate analyses (see 

Figures 1a-1c). These structures (Independent, Moderately Dependent, and Very Dependent) 

created sets of effects from simulated data that included dependent effect sizes. Each structure 

refers to groups of effect sizes with varying degrees of dependence that were univariately 

analyzed together. 

 In Figure 1a, effect sizes within columns come from independent studies and are 

statistically independent of each other. Pairs of effect sizes across columns come from the same 

studies and are correlated to a specified degree (𝜌). Effect sizes in univariate meta-analyses are 

typically analyzed separately for each outcome. When we analyze data within each column of 

Figure 1a, we have two independent analyses of independent effects. 

 Figure 1b was created by swapping the first fourth of the effect sizes from column 2 in 

Figure 1a with the last fourth of effect sizes from column 1, creating a somewhat elevated level 
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of dependence in both columns. Swapped effect sizes are outlined in bold. Half of the effect sizes 

in each column are dependent ({(𝑑1,1, 𝑑1,2),… , (𝑑𝑎,1, 𝑑𝑎,2)} ∩

{(𝑑𝑐+1,1, 𝑑𝑐+1,2),… , (𝑑𝑘,1, 𝑑𝑘,2)}). This scenario to presents a moderate amount of dependence. 

Figure 1c was created using the same procedure, however the first half of the effect sizes from 

column 2 in Figure 1a were swapped with the last half of effect sizes from column 1. This 

created an even higher level of dependence in both columns compared to Figure 1b. 

 Frequencies of 𝑄 statistics were calculated and compared to expected frequencies 

specified by 𝜒𝑘−1
2 . With 𝑁meta = 3000 replications, the 95% confidence interval for the 

proportion of empirical Type I errors was . 05 ± 𝑍.05 2⁄ √. 05(1 − .05)𝑁meta
−1 ≡ [. 042, .058]. 

Multivariate Procedures 

 The univariate approach used to analyze the data in the previous section ignored existing 

dependence for 𝑑s in two of the dependency structures. All factors except the dependency 

structure from univariate analyses were relevant to the multivariate analyses. A new factor 

(correlation type) was examined as well. 

 Initial steps of the multivariate procedures paralleled those described above. However, 

data were not reorganized as in Figures 1b and 1c because the effects for both outcomes were 

analyzed simultaneously using the GLS approach. An estimate of the covariance between 

outcomes is required. Two values were used for the Pearson product-moment correlation, 𝑟. 

First, an empirical estimate of the pooled within-groups correlation, 𝑟̅TC, was calculated as 

𝑟̅TC =
𝑟T + 𝑟C

2
 , (11) 

 

where 𝑟T and 𝑟C were the sample correlations between treatment and control groups. The value of 

𝑟̅TC was then used to compute (4). Second, we computed subsequent GLS analyses using the 
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known value of 𝜌. 

Results/Findings 

Univariate Results 

 Figures 2-4 present results for univariate analyses, grouped by 𝛿. Throughout all 

conditions under the independent structure, error rates never rose above nominal levels. When 

error rates were statistically different from 𝛼 = .05, they were below the nominal level. For 

many cases where 𝑁 = 20, 𝑄s based on independent data showed error rates that were 

significantly lower than expected. Harwell (1997), among others, discussed how the 𝑄 statistic 

has low power for small studies. Error rates lower than 𝛼 when 𝑁 = 20 are not unexpected. 

 Conditions with moderately dependent data tended to produce error rates larger than 

those for similar conditions with independent effects. When 𝜌 = .50, the majority of the error 

rates were within nominal levels. As the between-outcomes correlation increased, error rates 

increased. When the between-outcomes correlation was very strong (𝜌 = .99), nearly all error 

rates for conditions under the moderately dependent structure were significantly larger than 

expected, the largest being .088. 

 Trends in the error rates under the very dependent structure were similar to those of the 

moderately dependent structure, but with even larger empirical significance levels. The largest 

error rate was .107, slightly more than twice the size of the expected. This occurred for the case 

with the largest values of 𝛿, 𝜌 𝑘, and 𝑁. All combinations of factors with very dependent data 

and strong between-outcomes correlations (𝜌 = .99) produced statistically significant error 

rates. When outcomes are highly correlated and analyzed together, error rates become inflated 

regardless of study sample size or the number of studies. Results did not appear to vary as a 

function of the size of 𝛿. 
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Multivariate Results 

 Figures 5-7 present error rates for multivariate analyses, grouped by 𝛿. Results for 𝑄M 

differed radically from those for 𝑄. Except for conditions with small studies (𝑁 = 20), the vast 

majority of error rates were within nominal levels. Overall, results for nominal error rates across 

most conditions were expected as GLS is a theoretically justifiable method that accounts for 

dependent data. As with the univariate results, results for 𝑄M did not appear to vary by 𝛿. 

 Recall that for the empirical correlation conditions we calculated correlation coefficients 

from the observed data, while for the population conditions the known between-outcomes 

correlation 𝜌 values were used. For some conditions the error rates were indistinguishable by 

correlation type. However, in other cases error rates appeared quite different. These 

discrepancies were more predominant with small study sample sizes and are likely due in part to 

sampling error in the estimate of 𝜌. In general, empirical error rates were smaller when 𝑄M was 

computed using the known value of 𝜌. 

Implications/Conclusions 

 The main purpose of this paper was to investigate the impact of multiple-endpoint 

dependency on the 𝑄 statistic under a variety of conditions. The application of typical univariate 

analyses to dependent effect sizes led to highly inflated Type I error rates for the 𝑄 statistic. 

Thus, if dependent data are synthesized together, the univariate 𝑄 test is conservative, rejecting 

with rates up to twice the nominal level. This result held regardless of individual study sample 

size or number of studies. Results from the multivariate simulations provided evidence that the 

GLS method of analyzing multivariate effects successfully accounts for multiple-endpoint 

dependency. Nominal levels of Type I error rates were found for all conditions except for those 

with small studies. When empirical 𝛼 levels deviated from the nominal .05 rate they were almost 
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always too low. This means the 𝑄M test is lenient, in that it is finding heterogeneity at less than 

chance levels. 

 This work adds to the current discussion of dependence in meta-analysis. The univariate 

results showed how homogeneity measures are affected when multiple-endpoint data are treated 

as independent in meta-analysis. Our multivariate results, in contrast, demonstrated that the GLS 

method for meta-analysis successfully accounts for multiple-endpoint dependency.  
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Table 1 

Simulation Factors 

Factor Levels 

Overall Effect Size (𝛿) 0, 0.4, 0.8 

Between-Outcomes Correlation (𝜌) .50, .75, .99 

Number of Studies (𝑘) 12, 24, 48, 96 

Study Sample Size (𝑁) 20, 100, 180, 260 

Dependency Structure* Independent, Moderately Dependent, Very Dependent 

Correlation Type (𝑟)** Empirical (𝑟̅TC), Population (𝜌) 

*Univariate approach only. 
 

**Multivariate approach only. 
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Figure 1a: Independent Structure1.          Figure 1b: Moderately Dependent Structure.          Figure 1c: Very Dependent Structure.

                                                 
1 Values of the subscripts 𝑎, 𝑏, and 𝑐 were 𝑎 = 𝑘 4⁄ , 𝑏 = 𝑘 2⁄ , 𝑐 = 3𝑘 4⁄ . 
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Figure 2: Univariate Results (𝛿 = 0). 
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Figure 3: Univariate Results (𝛿 = 0.4). 
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Figure 4: Univariate Results (𝛿 = 0.8). 
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Figure 5: Multivariate Results (𝛿 = 0). 
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Figure 6: Multivariate Results (𝛿 = 0.4). 
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Figure 7: Multivariate Results (𝛿 = 0.8). 


